DOI: 10.3290/j.jad.a44872, PubMed-ID: 32666067Seiten: 409-414, Sprache: EnglischJosic, Uros / Radovic, Ivana / Juloski, Jelena / Beloica, Milos / Popovic, Miljana / Alil, Ana / Mandic, JelenaPurpose: Immature teeth are characterized by short roots, thin root canal walls, and open apices, which makes them prone to fracture. The aim was to investigate whether fiber-post placement had an influence on the fracture resistance of endodontically treated immature teeth.
Materials and Methods: To simulate immature teeth, the apical third of 20 intact mandibular premolars was resected. After the access cavity was prepared, root canals and apices were enlarged. A 4-mm apical barrier was placed using calcium-silicate based material (Biodentine, Septodont). The teeth were then randomly assigned to two groups (n = 10). Root canals in group 1 were sealed using Acroseal (Septodont, France) and gutta-percha, followed by composite resin for the coronal restoration (Evetric, Ivoclar Vivadent). In group 2, fiber posts (FRC Postec Plus, Ivoclar Vivadent) were luted using self-adhesive composite cement (SpeedCEM Plus, Ivoclar Vivadent), followed by the same coronal restoration. The teeth were then subjected to fatigue and static load testing.
Results: The average loads (± SD) that led to tooth fracture were: 401.40 ± 296.83 N in group 1 and 636.20 ± 204.95 N in group 2. Unfavorable fractures were noted in 9 specimens from group 1 and in 7 specimens in group 2. No statistically significant difference in fracture resistance or fracture mode was found between the groups.
Conclusion: Fiber-post placement had no significant influence on the fracture resistance of endodontically treated immature teeth.
Schlagwörter: endodontically treated teeth, fiber posts, fracture resistance, self-adhesive composite cement