Purpose: To evaluate the microtensile bond strength (µTBS) of a one-step self-etch adhesive (1-SEA) to dentin and its interfacial nanomechanical properties after 8 years of water storage.
Materials and Methods: Flat coronal dentin surfaces of extracted human third molars were bonded with a 1-SEA (Clearfil S3 Bond Plus, CS3+) and built up with a hybrid resin composite (Clearfil AP-X). After storage in water for 24 h or 8 years, non-trimmed stick-shaped specimens were fabricated from the central part of each bonded tooth and subjected to the µTBS test at a crosshead speed of 1.0 mm/min. Failure modes and the morphology of debonded interfaces were analyzed using a scanning electron microscope (SEM). In addition, the elastic modulus (E) and hardness (H) of the adhesive layer and the resin composite were determined by an instrumented nanoindentation test. The acquired µTBS, E, and H data were statistically analyzed using t-tests to examine the effect of storage time (α = 0.05).
Results: The 8-year µTBS was slightly lower than that after 24 h, but the difference was not significant (p = 0.123). The SEM observation of debonded surfaces after 8 years revealed extrusions and lacunas. E and H of the adhesive layer and the resin composite significantly decreased over the 8-year water storage (p < 0.001).
Conclusions: Although 8 years of water storage did not decrease the µTBS of CS3+ significantly, the observed failure mode patterns and significantly decreased nanomechanical properties indicated resin degradation of the adhesive and the resin composite.
Keywords: bond durability, microtensile bond strength, one-step adhesive, dentin, resin composite, nanohardness, elastic modulus, failure mode