Aim: The present study aimed to evaluate the accuracy of automated detection of preparation finish lines in teeth with defective margins.
Materials and methods: An extracted first molar was prepared for a full veneer crown, and marginal defects were created and scanned (discontinuity of finish line: 0.5, 1.0, and 1.5 mm; additional line angle: connected, partially connected, and disconnected). Six virtual defect models were entered into CAD software and the preparation finish line was designated by 20 clinicians (CAD-experienced group: n = 10; CAD-inexperienced group: n = 10) using the automated finish line detection method. The accuracy of automatic detection was evaluated by calculating the 3D deviation of the registered finish line. The Kruskal-Wallis and Mann-Whitney U tests were used for between-group comparisons (α = 0.05).
Results: The deviation values of the registered finish lines were significantly different according to conditions with different amounts of finish line discontinuity (P < 0.001). There was no statistical difference in the deviation of the registered finish line between models with additional line angles around the margin. Moreover, no statistical difference was found in the results between CAD-experienced and CAD-inexperienced operators.
Conclusions: The accuracy of automated finish line detection for tooth preparation can differ when the finish line is discontinuous. The presence of an additional line angle around the preparation margin and prior experience in dental CAD software do not affect the accuracy of automated finish line detection.
Keywords: tooth preparation, marginal defect, computer-aided design, finish line, automated detection, computer algorithm