DOI: 10.3290/j.jad.a20179, PubMed ID (PMID): 21403937Pages 71-78, Language: EnglishMeng, Xiangfeng / Yoshida, Keiichi / Taira, Yohsuke / Kamada, Kohji / Luo, XiaopingPurpose: The aim of this study was to measure siloxane quantity, pH value, and resin wettability on ceramics silanized by five silane coupling agents, and to test the correlation of these parameters of silane coupling agents with bond durability between a machinable glass ceramic and resin cements.
Materials and Methods: 1.5-mm-thick ceramic plates (ProCAD, Ivoclar Vivadent) were polished, cleaned, and bonded with ten combinations of five silane coupling agents (Monobond S [Ivoclar Vivadent], Rely X Ceramic Primer [3M], Clearfil Ceramic Primer [Kuraray], GC Ceramic Primer [GC], Porcelain Liner M [Sun Medical]) and two dual-curing resin cements (VariolinkII [VLII, Ivoclar Vivadent], Linkmax HV [LMHV, GC]). Their microshear bond strength was measured after 0, 10,000, and 30,000 thermal cycles. Siloxane quantity, pH value of silane coupling agents and contact angle of Heliobond (Ivoclar Vivadent) to silanized ceramic were measured using a FTIR spectrophotometer, pH-indicator strips, and a contact-angle meter, respectively. Bond strength data were analyzed by three-way ANOVA. For each cement, Pearson's correlation coefficient was calculated to analyze possible correlation between bond strength under different thermocycling conditions and absorbance peak of siloxane, pH value of silane coupling agents, and contact angle of resin to the silanized ceramic surface.
Results: The bond strength of ceramic was significantly influenced by the silane coupling agent and thermal cycles, not by resin cement. For both cements, only a negative correlation was found to be significant between the contact angle of resin to silanized ceramic surfaces and bond strength after 30,000 thermal cycles.
Conclusion: The better the wettability of resin on different silanized ceramic surfaces could improve their bond durability.
Keywords: silane coupling agent, contact angle, pH, siloxane, dual-curing resin cement, machinable ceramic, microshear bond strength