Various cookies are used on our website: We use technically necessary cookies for the purpose of enabling functions such as login or a shopping cart. We use optional cookies for marketing and optimization purposes, in particular to place relevant and interesting ads for you on Meta's platforms (Facebook, Instagram). You can refuse optional cookies. More information on data collection and processing can be found in our privacy policy.
10. Jan 2019 — 12. Jan 2019Estrel Convention Center
Speakers: Jiro Abe, Michèle Aerden, Wael Att, Stavros Avgerinos, Avijit Banerjee, Vesna Barac Furtinger, Klaus-Dieter Bastendorf, Lars Bergmans, Ashwini Bhalerao, Jaroslav Bláha, Sebastian Bürklein, Daniel Buser, Josette Camilleri, Sevim Canlar, Sandra Chmieleck, Bun San Chong, Victor Clavijo, Carsten Czerny, Bettina Dannewitz, Alessandro Devigus, Didier Dietschi, Irina Dragan, Daniel H.-J. Edelhoff, Peter Eickholz, Karim Elhennawy, Peter Engel, Wolfgang Eßer, Marco Esposito, Susanne Fath, Vincent Fehmer, Federico Ferraris, Stefan Fickl, Mauro Fradeani, Roland Frankenberger, Eiji Funakoshi, Petra Gierthmühlen, Christiane Gleissner, Florian Göttfert, Dennis Grosse, Galip Gürel, Christian Haase, Horst-Wolfgang Haase, Manuela Hackenberg, Jörg Haist, Anke Handrock, Arndt Happe, Karsten Heegewaldt, Rüdiger Henrici, Michael Hülsmann, Hajime Igarashi, Tomohiro Ishikawa, Hideaki Katsuyama, Kathryn Kell, Matthias Kern, Fouad Khoury, Marko Knauf, Ralf J. Kohal, Stefen Koubi, Fabian Langenbach, Henriette Terezia Lerner, Thomas Malik, Siegfried Marquardt, Henrike März, Kathleen Menzel, Helen Möhrke, Kotaro Nakata, Marc L. Nevins, Masayuki Okawa, Rebecca Otto, Mark Stephen Pace, Shanon Patel, Karin Probst, Domenico Ricucci, Katrin Rinke, Irena Sailer, Edgar Schäfer, Ralf Schäfermeier, Jan Schellenberger, Tom Schloss, Gottfried Schmalz, Devorah Schwartz-Arad, Frank Schwarz, Thomas A. Schwenk, Anton Sculean, Bernd Stadlinger, Athanasios Stamos, Ana Stevanovic, Masana Suzuki, Senichi Suzuki, Hiroyuki Takino, Sameh Talaat, Mitsuhiro Tsukiboshi, Hideaki Ueda, Istvan Urban, Luc W. M. van der Sluis, Eric Van Dooren, Bart Van Meerbeek, Paula Vassallo, Juliane von Hoyningen-Huene, Michael Walter, Siegbert Witkowski, Stefan Wolfart, Sylvia Wuttig, Masao Yamazaki, Maciej Zarow, Matthias Zehnder, Raquel Zita Gomes, Giovanni Zucchelli, Otto Zuhr, Bettina Zydatiß
Quintessenz Verlags-GmbH
This author's journal articles
International Journal of Computerized Dentistry, 3/2020
SciencePubMed ID (PMID): 32789308Pages 211-218, Language: German, EnglishTalaat, Sameh / Kaboudan, Ahmed / Talaat, Wael / Kusnoto, Budi / Sanchez, Flavio / Elnagar, Mohammed H. / Ghoneima, Ahmed / Bourauel, Christoph
Aim: To assess the accuracy of DigiBrain4, Inc (DB4) Dental Classifier and DB4 Smart Search Engine* in recognizing, categorizing, and classifying dental visual assets as compared with Google Search Engine, one of the largest publicly available search engines and the largest data repository.
Materials and methods: Dental visual assets were collected and labeled according to type, category, class, and modifiers. These dental visual assets contained radiographs and clinical images of patients' teeth and occlusion from different angles of view. A modified SqueezeNet architecture was implemented using the TensorFlow r1.10 framework. The model was trained using two NVIDIA Volta graphics processing units (GPUs). A program was built to search Google Images, using Chrome driver (Google web driver) and submit the returned images to the DB4 Dental Classifier and DB4 Smart Search Engine. The categorical accuracy of the DB4 Dental Classifier and DB4 Smart Search Engine in recognizing, categorizing, and classifying dental visual assets was then compared with that of Google Search Engine.
Results: The categorical accuracy achieved using the DB4 Smart Search Engine for searching dental visual assets was 0.93, whereas that achieved using Google Search Engine was 0.32.
Conclusion: The current DB4 Dental Classifier and DB4 Smart Search Engine application and add-on have proved to be accurate in recognizing, categorizing, and classifying dental visual assets. The search engine was able to label images and reject non-relevant results.
Keywords: dental visual assets, artificial intelligence, dental radiographs, dental clinical images, dental classifier, smart search engine, machine learning, deep learning, convolutional neural network