In der Umformtechnik, der spanenden Formgebung und Verfahrenstechnik werden extrem harte Werkzeuge benötigt, die konventionell über Pulverpressen hergestellt werden. Die dafür benötigten Hartmetalle bestehen aus den Metallbindern Nickel oder Kobalt und dem Hartstoff Wolframcarbid. Aus ihnen wurden bislang bereits zuverlässige Schneid-, Bohr-, Press- und Stanzwerkzeuge extrudiert, spritzgegossen oder über uniaxiales beziehungsweise kaltisostatisches Pulverpressen gefertigt. Komplexe oder spezifische Geometrien sind mit diesen Verfahren trotz teurer Nachbearbeitung jedoch nur sehr aufwendig oder gar nicht zu realisieren.
Eine Abhilfe schaffen additive Verfahren. Der 3-D-Pulverdruck (Binder Jetting) und der thermoplastische 3-D-Druck (3DTP) wurden am Fraunhofer-Institut für Keramische Technologien und Systeme (IKTS) in Dresden bereits erfolgreich mit ausgewählten Hartmetallen eingesetzt. Allerdings ist bei diesen Verfahren neben der Einstellung des Bindergehalts und der resultierenden Härte auch die Bauteilgröße limitiert.
Fused Filament Fabrication (FFF)
Das aus der kunststoffverarbeitenden Industrie stammende additive Fertigungsverfahren Fused Filament Fabrication (FFF) wurde am IKTS zunächst auf Keramiken und Verbundwerkstoffe adaptiert. Bei der FFF werden 3-D-Körper aus einem flexiblen, schmelzfähigen Filament aufgebaut. Das Fraunhofer IKTS besitzt seit Jahrzehnten eine ausgewiesene pulvermetallurgische Kompetenz, mit der es gelungen ist, das für das FFF notwendige Filament aus hartmetallischen Pulvern mit organischen Bindern herzustellen. Je nach Werkstoffgefüge lassen sich über reduzierte Korngröße und Bindergehalt die Härte, Druck- und Biegefestigkeit von Hartmetallen gezielt steigern.
Korngröße und Bindergehalt reduziert
Dr. Johannes Pötschke leitet am IKTS die Gruppe Hartmetalle und Cermets und bestätigt: „Die Filamente können als Halbzeug in Standarddruckern eingesetzt werden und ermöglichen es erstmals, Hartmetalle mit einem sehr geringen Bindergehalt von lediglich acht Prozent und mit feinsten Korngrößen unter 0,8 Mikrometer zu extrem harten Bauteilen mit 1.700 HV10 zu verdrucken.“ Die Entwicklung wurde Mitte Oktober auf der EuroPM2018 in Bilbao vorgestellt.