Rund 150 Millionen Arztbriefe werden pro Jahr in Deutschland geschrieben. Das kostet Zeit, die an anderer Stelle fehlt. Abhilfe könnte der „Arztbriefgenerator“ schaffen. Denn: Ein Großteil der medizinischen Daten liegt in Textform vor, deren Auswertung und Weiterverarbeitung oft mühsam und aufwendig ist. Die Lösung: eine Kombination aus Algorithmen und Künstlicher Intelligenz, die beim sogenannten Natural Language Processing (NLP) eingesetzt wird. Informationen aus Texten werden hierbei extrahiert und in strukturierter Form zur Verfügung gestellt, wodurch Prozesse wie Qualitätssicherung, die Erstellungen von Statistiken, klinische Entscheidungsunterstützungen und Abrechnungen einfach und schnell möglich sind. Auch können aus den Daten neue Texte wie Arztbriefe erzeugt werden – in einem Bruchteil der Zeit, die bisher dafür benötigt wird. Ein Prototyp des Arztbriefgenerators soll bereits im kommenden Jahr an der Universitätsmedizin Essen im Zuge des KI.NRW-Flagship-Projekts SmartHospital.NRW getestet werden.
Welche Möglichkeiten sich außerdem noch durch NLP für den medizinischen Bereich ergeben, haben Forschende des Fraunhofer-Instituts für Intelligente Analyse- und Informationssysteme IAIS im neuen Whitepaper „Natural Language Processing in der Medizin“ zusammengefasst.
Höchste Wachstumsraten bei Gesundheitsdaten
Gesundheitsdaten zählen zu den derzeit am stärksten wachsenden Datenmengen. „Wie wir diese Daten weiterverarbeiten und welche Möglichkeiten sich dadurch für Patientinnen, Patienten, Pflegende und ärztliches Personal ergeben ist eine spannende Frage, deren Antwort wir ein Stück weit selbst in der Hand haben“, erklärt Dario Antweiler, Teamleiter Healthcare Analytics am Fraunhofer IAIS. Gemeinsam mit seinem Team hat er ein Whitepaper verfasst, in dem aktuelle Entwicklungen und Möglichkeiten dokumentenbasierter Prozesse im medizinischen Bereich aufgezeigt werden. Einige davon sind noch Zukunftsmusik, andere, vom Fraunhofer IAIS bereits entwickelte Anwendungen werden schon erfolgreich in Krankenhäusern eingesetzt.
„Large Language Moduls wie CHatGPT werden künftig multimodal arbeiten, sie können also auch Bilder oder tabellarische Daten, und nicht nur Texte und gesprochene Sprache verarbeiten“, erklärt Antweiler. Dadurch ergäben sich auch im medizinischen Bereich wiederum neue Möglichkeiten, mit denen man das Personal entlasten, und Behandlungsprozesse – stets unter Berücksichtigung des Datenschutzes – im Sinne der Patienten weiter verbessern könne.
Hilfe bei Personalmangel, Kostendruck und Information-Overload
Das ist wichtig, denn das Gesundheitswesen steht vor zahlreichen Herausforderungen wie Personalmangel, Kostendruck und einem „Information-Overload“, der durch die stetig wachsende Menge an Daten entsteht. „Diese Daten auszuwerten, zu analysieren und daraus Schlüsse zu ziehen kostet an vielen unterschiedlichen Stellen wertvolle Zeit, die im stressigen Krankenhausalltag einfach fehlt. Im schlimmsten Fall gehen wichtige Informationen verloren, was die Behandlung erschweren, teure Doppeluntersuchungen oder unvollständige Abrechnungen nach sich ziehen kann“, erklärt Antweiler.
Um Lösungen für diese Probleme in die Krankenhäuser zu bringen, arbeitet das Healthcare-Analytics-Team bereits eng mit medizinischem Personal zusammen: Aktuell entwickelt es gemeinsam mit mehreren Universitätskliniken, darunter die Universitätsmedizin Essen, verschiedene Möglichkeiten der Informationsextraktion aus Dokumenten.
Der Arztbriefgenerator
Das nächste Ziel: Bis Ende 2024 soll ein Prototyp des Arztbriefgenerators in der Uniklinik Essen erprobt werden, der die Erstellung von Entlassbriefen vereinfacht. Dafür wertet die KI alle vorliegenden Dokumente sowie strukturierte Daten aus und erstellt einen natürlich klingenden Text, der zusätzlich leicht verständliche Erklärungen für die Patient*innen enthält. Nach einer Kontrolle und möglichen Ergänzung oder Änderung durch die Behandelnden wird der Entlassbrief sozusagen per Knopfdruck erstellt – in einem Bruchteil der Zeit, die eine rein manuelle Erstellung gekostet hätte. Auch können Patientinnen und Patienten, die am Tag ihrer Entlassung häufig länger auf dieses Dokument warten müssen, das Krankenhaus früher verlassen.
Weitere Vorteile von Clinical NLP: Die Arbeitsbelastung des medizinischen Personals verringert sich, da die KI wichtige Informationen aus Krankendaten eines Patienten automatisiert zusammenfassen, und allen Behandlern übersichtlich strukturiert zu Verfügung stellen kann. Durch NLP im Krankenhaus werden Prozesse vereinfacht, da Informationen in kürzester Zeit greifbar sind, umgehend weiterverarbeitet und dem medizinischen Personal vollumfänglich zur Verfügung gestellt werden können.